Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38125701

RESUMO

Red Supergiant stars (RSGs) are known to eject large amounts of material during this evolutionary phase. However, the processes powering the mass ejection in low- and intermediate-mass stars do not work for RSGs and the mechanism that drives the ejection remains unknown. Different mechanisms have been proposed as responsible for this mass ejection including Alfvén waves, large convective cells, and magnetohydrodynamical (MHD) disturbances at the photosphere, but so far little is known about the actual processes taking place in these objects. Here we present high angular resolution interferometric ALMA maps of VY CMa continuum and molecular emission, which resolve the structure of the ejecta with unprecedented detail. We reconstructed the 3D structure of the gas traced by the different species. It allowed us to study the morphology and kinematics of the gas traced by the different species surrounding VY CMa. Two types of ejecta are clearly observed: extended, irregular, and vast ejecta surrounding the star that are carved by localized fast outflows. The structure of the outflows is found to be particularly flat. We present a 3D reconstruction of these outflows and proof of the carving. This indicates that two different mass loss processes take place in this massive star. We tentatively propose the physical cause for the formation of both types of structures. These results provide essential information on the mass loss processes of RSGs and thus of their further evolution.

2.
Nature ; 617(7962): 696-700, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198489

RESUMO

During their thermally pulsing phase, asymptotic giant branch (AGB) stars eject material that forms extended dusty envelopes1. Visible polarimetric imaging found clumpy dust clouds within two stellar radii of several oxygen-rich stars2-6. Inhomogeneous molecular gas has also been observed in multiple emission lines within several stellar radii of different oxygen-rich stars, including W Hya and Mira7-10. At the stellar surface level, infrared images have shown intricate structures around the carbon semiregular variable R Scl and in the S-type star π1 Gru11,12. Infrared images have also shown clumpy dust structures within a few stellar radii of the prototypical carbon AGB star IRC+10°216 (refs. 13,14), and studies of molecular gas distribution beyond the dust formation zone have also shown complex circumstellar structures15. Because of the lack of sufficient spatial resolution, however, the distribution of molecular gas in the stellar atmosphere and the dust formation zone of AGB carbon stars is not known, nor is how it is subsequently expelled. Here we report observations with a resolution of one stellar radius of the recently formed dust and molecular gas in the atmosphere of IRC+10°216. Lines of HCN, SiS and SiC2 appear at different radii and in different clumps, which we interpret as large convective cells in the photosphere, as seen in Betelgeuse16. The convective cells coalesce with pulsation, causing anisotropies that, together with companions17,18, shape its circumstellar envelope.

3.
Astron Astrophys ; 6292019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31798182

RESUMO

We present interferometric observations with the Atacama Large Millimeter Array (ALMA) of the free-free continuum and recombination line emission at 1 and 3 mm of the "Red Square Nebula" surrounding the B[e]-type star MWC922. The unknown distance to the source is usually taken to be d=1.7-3 kpc. The unprecedented angular resolution ( up to ∼ 0 . ″ 02 ) and exquisite sensitivity of these data unveil, for the first time, the structure and kinematics of the emerging, compact ionized region at its center. We imaged the line emission of H30α and H39α, previously detected with single-dish observations, as well as of H51ϵ, H55γ, and H63δ, detected for the first time in this work. The line emission is seen over a full velocity range of ~180 km s-1 arising in a region of diameter < 0 . ″ 14 (less than a few hundred au) in the maser line H30α, which is the most intense transition reported here. We resolve the spatio-kinematic structure of a nearly edge-on disk rotating around a central mass of ~10 M ⊙ (d=1.7 kpc) or ~18 M ⊙ (d=3 kpc), assuming Keplerian rotation. Our data also unveil a fast (~100 km s-1) bipolar ejection (a jet?) orthogonal to the disk. In addition, a slow (<15 km s-1) wind may be lifting off the disk. Both, the slow and the fast winds are found to be rotating in a similar manner to the ionized layers of the disk. This represents the first empirical proof of rotation in a bipolar wind expanding at high velocity (~100 km s-1 ). The launching radius of the fast wind is found to be <30-51 au i.e., smaller than the inner rim of the ionized disk probed by our observations. We believe that the fast wind is actively being launched, probably by a disk-mediated mechanism in a (accretion?) disk around a possible compact companion. We have modelled our observations using the radiative transfer code MORELI. This has enabled us to describe with unparalleled detail the physical conditions and kinematics in the inner layers of MWC 922, which has revealed itself as an ideal laboratory for studying the interplay of disk rotation and jet-launching. Although the nature of MWC 922 remains unclear, we believe it could be a ~15 M ⊙ post-main sequence star in a mass-exchanging binary system. If this is the case, a more realistic value of the distance may be d~3 kpc.

4.
Astron Astrophys ; 6242019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31156253

RESUMO

CONTEXT: Asymptotic giant branch (AGB) stars go through a process of strong mass loss that involves pulsations of the atmosphere, which extends to a region in which the conditions are adequate for dust grains to form. Radiation pressure acts on these grains which, coupled to the gas, drive a massive outflow. The details of this process are not clear, including which molecules are involved in the condensation of dust grains. AIMS: We seek to study the role of the SiO molecule in the process of dust formation and mass loss in M-type AGB stars. METHODS: Using the IRAM NOEMA interferometer we observed the 28SiO and 29SiO J = 3 - 2, v = 0 emission from the inner circumstellar envelope of the evolved stars IK Tau and IRC+10011. We computed azimuthally averaged emission profiles to compare the observations to models using a molecular excitation and ray-tracing code for SiO thermal emission. RESULTS: We observe circular symmetry in the emission distribution. We also find that the source diameter varies only marginally with radial velocity, which is not the expected behaviour for envelopes expanding at an almost constant velocity. The adopted density, velocity, and abundance laws, together with the mass-loss rate, which best fit the observations, give us information concerning the chemical behaviour of the SiO molecule and its role in the dust formation process. CONCLUSIONS: The results indicate that there is a strong coupling between the depletion of gas-phase SiO and gas acceleration in the inner envelope. This could be explained by the condensation of SiO into dust grains.

5.
Astron Astrophys ; 6182018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30473586

RESUMO

We present continuum and molecular line emission ALMA observations of OH 231.8+4.2, a well studied bipolar nebula around an asymptotic giant branch (AGB) star. The high angular resolution ( ∼ 0 · ″ 2 - 0 · ″ 3 ) and sensitivity of our ALMA maps provide the most detailed and accurate description of the overall nebular structure and kinematics of this object to date. We have identified a number of outflow components previously unknown. Species studied in this work include 12CO, 13CO, CS, SO, SO2, QCS, SiO, SiS, H3O+, Na37Cl, and CH3OH. The molecules Na37Cl and CH3OH are first detections in OH 231.8+4.2, with CH3OH being also a first detection in an AGB star. Our ALMA maps bring to light the totally unexpected position of the mass-losing AGB star (QX Pup) relative to the large-scale outflow. QX Pup is enshrouded within a compact (≲60 AU) parcel of dust and gas (clump S) in expansion (V exp~5-7 km s-1) that is displaced by ∼ 0 · ″ 6 to the south of the dense equatorial region (or waist) where the bipolar lobes join. Our SiO maps disclose a compact bipolar outflow that emerges from QX Pup's vicinity. This outflow is oriented similarly to the large-scale nebula but the expansion velocities are about ten times lower (V exp≲35km s-1). We deduce short kinematical ages for the SiO outflow, ranging from ~50-80 yr, in regions within ~150 AU, to ~400-500 yr at the lobe tips (~3500 AU). Adjacent to the SiO outflow, we identify a small-scale hourglass-shaped structure (mini-hourglass) that is probably made of compressed ambient material formed as the SiO outflow penetrates the dense, central regions of the nebula. The lobes and the equatorial waist of the mini-hourglass are both radially expanding with a constant velocity gradient (V exp ∝ r). The mini-waist is characterized by extremely low velocities, down to ~1 km s-1 at ~150 AU, which tentatively suggest the presence of a stable structure. The spatio-kinematics of the large-scale, high-velocity lobes (HV lobes) and the dense equatorial waist (large waist) known from previous works are now precisely determined, indicating that both were shaped nearly simultaneously about ~800-900 yr ago. We report the discovery of two large (~8″×6″), faint bubble-like structures (fish bowls) surrounding the central parts of the nebula. These are relatively old structures although probably slightly (~100-200 yr) younger than the large waist and the HV lobes. We discuss the series of events that may have resulted in the complex array of nebular components found in OH 231.8+4.2 as well as the properties and locus of the central binary system. The presence of ≲80 yr bipolar ejections indicate that the collimated fast wind engine is still active at the core of this outstanding object.

6.
Astrophys J ; 860(2)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29977091

RESUMO

We present new high angular resolution interferometer observations of the υ = 0 J = 14 - 13 and 15 - 14 SiS lines towards IRC+10216, carried out with CARMA and ALMA. The maps, with angular resolutions of ≃0⋅″25and0⋅″55, reveal (1) an extended, roughly uniform, and weak emission with a size of ≃0⋅″5, (2) a component elongated approximately along the East-West direction peaking at ≃0⋅″13and0⋅″17 at both sides of the central star, and (3) two blue- and red-shifted compact components peaking around 0⋅″07 to the NW of the star. We have modeled the emission with a 3D radiation transfer code finding that the observations cannot be explained only by thermal emission. Several maser clumps and one arc-shaped maser feature arranged from 5 to 20R⋆ from the central star, in addition to a thin shell-like maser structure at ≃ 13R⋆ are required to explain the observations. This maser emitting set of structures accounts for 75% of the total emission while the other 25% is produced by thermally excited molecules. About 60% of the maser emission comes from the extended emission and the rest from the set of clumps and the arc. The analysis of a time monitoring of these and other SiS and 29SiS lines carried out with the IRAM 30 m telescope from 2015 to present suggests that the intensity of some spectral components of the maser emission strongly depends on the stellar pulsation while other components show a mild variability. This monitoring evidences a significant phase lag of ≃ 0.2 between the maser and NIR light-curves.

7.
Astron Astrophys ; 6102018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29456257

RESUMO

During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2-1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and C4H(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (< 40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small (r < 0.3″) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s-1, with small turbulent motions. Based on that property, we have reconstructed the 3-D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r < 25″) envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 years and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years.

8.
Proc Int Astron Union ; 14: 535-537, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31908652

RESUMO

Silicon carbide together with amorphous carbon are the main components of dust grains in the atmospheres of C-rich AGB stars. Small gaseous Si-C bearing molecules (such as SiC, SiCSi, and SiC2) are efficiently formed close to the stellar photosphere. They likely condense onto dust seeds owing to their highly refractory nature at the lower temperatures (i.e., below about 2500 K) in the dust growth zone which extends a few stellar radii from the photosphere. Beyond this region, the abundances of Si-C bearing molecules are expected to decrease until they are eventually reformed in the outer shells of the circumstellar envelope, owing to the interaction between the gas and the interstellar UV radiation field. Our goal is to understand the time-dependent chemical evolution of Si-C bond carriers probed by molecular spectral line emission in the circumstellar envelope of IRC+10216 at millimeter wavelengths.

9.
Astron Astrophys ; 6072017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29151609

RESUMO

CONTEXT: ALMA is providing us essential information on where certain molecules form. Observing where these molecules emission arises from, the physical conditions of the gas, and how this relates with the presence of other species allows us to understand the formation of many species, and to significantly improve our knowledge of the chemistry that occurs in the space. AIMS: We studied the molecular distribution of NaCN around IRC +10216, a molecule detected previously, but whose origin is not clear. High angular resolution maps allow us to model the abundance distribution of this molecule and check suggested formation paths. METHODS: We modeled the emission of NaCN assuming local thermal equilibrium (LTE) conditions. These profiles were fitted to azimuthal averaged intensity profiles to obtain an abundance distribution of NaCN. RESULTS: We found that the presence of NaCN seems compatible with the presence of CN, probably as a result of the photodissociation of HCN, in the inner layers of the ejecta of IRC +10216. However, similar as for CH3CN, current photochemical models fail to reproduce this CN reservoir. We also found that the abundance peak of NaCN appears at a radius of 3 × 1015cm, approximately where the abundance of NaCl, suggested to be the parent species, starts to decay. However, the abundance ratio shows that the NaCl abundance is lower than that obtained for NaCN. We expect that the LTE assumption might result in NaCN abundances higher than the real ones. Updated photochemical models, collisional rates, and reaction rates are essential to determine the possible paths of the NaCN formation.

10.
Astron Astrophys ; 6012017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28469283

RESUMO

Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC +10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of λ 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of ~1″. The spatial distribution of all these species is a hollow, 5-10″ wide, spherical shell located at a radius of 10-20″ from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2″ wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals.

11.
Astron Astrophys ; 6142017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29983449

RESUMO

AIMS: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. METHODS: We present ALMA maps of 12CO and 13CO J=3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. RESULTS: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of ~ 4 1016 cm. The total nebular mass is ~ 2 10-2M⊙, of which ~ 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of ~ 10000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.

12.
Astron Astrophys ; 5972017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28008188

RESUMO

CONTEXT: The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. It is becoming increasingly clear that the main agents must operate at their innermost regions, where a significant equatorial density enhancement should be present and related to the collimation of light and jet launching from the central star preferentially towards the polar directions. Most of the material in this equatorial condensation must be lost during the asymptotic giant branch as stellar wind and later released from the surface of dust grains to the gas phase in molecular form. Accurately tracing the molecule-rich regions of these objects can give valuable insight into the ejection mechanisms themselves. AIMS: We investigate the physical conditions, structure and velocity field of the dense molecular region of the planetary nebula NGC 6302 by means of ALMA band 7 interferometric maps. METHODS: The high spatial resolution of the 12CO and 13CO J=3-2 ALMA data allows for an analysis of the geometry of the ejecta in unprecedented detail. We built a spatio-kinematical model of the molecular region with the software SHAPE and performed detailed non-LTE calculations of excitation and radiative transfer with the shapemol plug-in. RESULTS: We find that the molecular region consists of a massive ring out of which a system of fragments of lobe walls emerge and enclose the base of the lobes visible in the optical. The general properties of this region are in agreement with previous works, although the much greater spatial resolution of the data allows for a very detailed description. We confirm that the mass of the molecular region is 0.1 M⊙. Additionally, we report a previously undetected component at the nebular equator, an inner, younger ring inclined ~60° with respect to the main ring, showing a characteristic radius of 7.5×1016 cm, a mass of 2.7×10-3 M⊙, and a counterpart in optical images of the nebula. This inner ring has the same kinematical age as the northwest optical lobes, implying it was ejected approximately at the same time, hundreds of years after the ejection of the bulk of the molecular ring-like region. We discuss a sequence of events leading to the formation of the molecular and optical nebulae, and briefly speculate on the origin of this intriguing inner ring.

13.
Astron Astrophys ; 5932016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28003685

RESUMO

AIMS: We aim to study the rotating and expanding gas in the Red Rectangle, which is a well known object that recently left the asymptotic giant branch (AGB) phase. We analyze the properties of both components and the relation between them. Rotating disks have been very elusive in post-AGB nebulae, in which gas is almost always found to be in expansion. METHODS: We present new high-quality ALMA observations of C17O J=6-5 and H13CN J=4-3 line emission and results from a new reduction of already published 13CO J=3-2 data. A detailed model fitting of all the molecular line data, including previous maps and single-dish observations of lines of CO, CII, and CI, was performed using a sophisticated code that includes an accurate nonlocal treatment of radiative transfer in 2D. These observations (of low- and high-opacity lines requiring various degrees of excitation) and the corresponding modeling allowed us to deepen the analysis of the nebular properties. We also stress the uncertainties, particularly in the determination of the boundaries of the CO-rich gas and some properties of the outflow. RESULTS: We confirm the presence of a rotating equatorial disk and an outflow, which is mainly formed of gas leaving the disk. The mass of the disk is ~ 0.01 M⊙, and that of the CO-rich outflow is around ten times smaller. High temperatures of ≳ 100 K are derived for most components. From comparison of the mass values, we roughly estimate the lifetime of the rotating disk, which is found to be of about 10000 yr. Taking data of a few other post-AGB composite nebulae into account, we find that the lifetimes of disks around post-AGB stars typically range between 5000 and more than 20000 yr. The angular momentum of the disk is found to be high, ~ 9 M⊙ AU km s-1, which is comparable to that of the stellar system at present. Our observations of H13CN show a particularly wide velocity dispersion and indicate that this molecule is only abundant in the inner Keplerian disk, at ≲ 60 AU from the stellar system. We suggest that HCN is formed in a dense photodissociation region (PDR) due to the UV excess known to be produced by the stellar system, following chemical mechanisms that are well established for interstellar medium PDRs and disks orbiting young stars. We further suggest that this UV excess could lead to an efficient formation and excitation of PAHs and other C-bearing macromolecules, whose emission is very intense in the optical counterpart.

14.
Astrophys J ; 8252016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27733778

RESUMO

We report laboratory spectroscopy for the first time of the J = 1-0 and J = 2-1 lines of Na35Cl and Na37Cl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δv = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to J = 150 and v = 8, from which the ALMA data of evolved stars can be modeled and interpreted.

15.
Astron Astrophys ; 5922016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27458319

RESUMO

AIMS: Our knowledge of the chemical properties of the circumstellar ejecta of the most massive evolved stars is particularly poor. We aim to study the chemical characteristics of the prototypical yellow hypergiant star, IRC +10420. For this purpose, we obtained full line surveys at 1 and 3 mm atmospheric windows. METHODS: We have identified 106 molecular emission lines from 22 molecular species. Approximately half of the molecules detected are N-bearing species, in particular HCN, HNC, CN, NO, NS, PN, and N2H+. We used rotational diagrams to derive the density and rotational temperature of the different molecular species detected. We introduced an iterative method that allows us to take moderate line opacities into account. RESULTS: We have found that IRC +10420 presents high abundances of the N-bearing molecules compared with O-rich evolved stars. This result supports the presence of a N-rich chemistry, expected for massive stars. Our analysis also suggests a decrease of the 12C/13C ratio from ≳ 7 to ~ 3.7 in the last 3800 years, which can be directly related to the nitrogen enrichment observed. In addition, we found that SiO emission presents a significant intensity decrease for high-J lines when compared with older observations. Radiative transfer modeling shows that this variation can be explained by a decrease in the infrared (IR) flux of the dust. The origin of this decrease might be an expansion of the dust shell or a lower stellar temperature due to the pulsation of the star.

16.
Astrophys J ; 818(2)2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26997665

RESUMO

The Atacama Large Millimeter/submillimeter Array (ALMA) is allowing us to study the innermost regions of the circumstellar envelopes of evolved stars with un-precedented precision and sensitivity. Key processes in the ejection of matter and dust from these objects occur in their inner zones. In this work, we present sub-arcsecond interferometric maps of transitions of metal-bearing molecules towards the prototypical C-rich evolved star IRC +10216. While Al-bearing molecules seem to be present as a roughly spherical shell, the molecular emission from the salts NaCl and KCl presents an elongation in the inner regions, with a central minimum. In order to accurately analyze the emission from the NaCl rotational lines, we present new calculations of the collisional rates for this molecule based on new spectroscopic constants. The most plausible interpretation for the spatial distribution of the salts is a spiral with a NaCl mass of 0.08M☉. Alternatively, a torus of gas and dust would result in similar structures as those observed. From the torus scenario we derive a mass of ~ 1.1 × 10-4M☉. In both cases, the spiral and the torus, the NaCl structure presents an inner minimum of 27 AU. In the case of the torus, the outer radius is 73 AU. The kinematics of both the spiral and the torus suggests that they are slowly expanding and rotating. Alternative explanations for the presence of the elongation are explored. The presence of these features only in KCl and NaCl might be a result of their comparatively high dipole moment with respect to the Al-bearing species.

17.
Astrophys J Lett ; 805(2)2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26688711

RESUMO

We report the detection of SiS rotational lines in high-vibrational states as well as SiO and SiC2 lines in their ground vibrational state toward IRC+10216 during the Atacama Large Millimeter Array Cycle 0. The spatial distribution of these molecules shows compact emission for SiS and a more extended emission for SiO and SiC2, and also proves the existence of an increase in the SiC2 emission at the outer shells of the circumstellar envelope. We analyze the excitation conditions of the vibrationally excited SiS using the population diagram technique, and we use a large velocity gradient model to compare with the observations. We found moderate discrepancies between the observations and the models that could be explained if SiS lines detected are optically thick. Additionally, the line profiles of the detected rotational lines in the high energy vibrational states show a decreasing linewidth with increasing energy levels. This may be evidence that these lines could be excited only in the inner shells, i.e., the densest and hottest, of the circumstellar envelope of IRC+10216.

18.
Astrophys J ; 814(2)2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709313

RESUMO

IRC +10216 is a circumstellar envelope around a carbon-rich evolved star which contains a large variety of molecules. According to interferometric observations, molecules are distributed either concentrated around the central star or as a hollow shell with a radius of ~15″. We present ALMA Cycle 0 band 6 observations of the J = 14 - 13 rotational transition of CH3CN in IRC +10216, obtained with an angular resolution of [Formula: see text]. The bulk of the emission is distributed as a hollow shell located at just ~2″ from the star, with a void of emission in the central region up to a radius of ~1″. This spatial distribution is markedly different from those found to date in this source for other molecules. Our analysis indicate that methyl cyanide is not formed neither in the stellar photosphere nor far in the outer envelope, but at radial distances as short as 1-2″, reaching a maximum abundance of ~ 0.02 molecules cm-3 at 2″ from the star. Standard chemical models of IRC +10216 predict that the bulk of CH3CN molecules should be present at a radius of ~ 15″, where other species such as polyyne radicals and cyanopolyynes are observed, with an additional inner component within 1″ from the star. The non-uniform structure of the circumstellar envelope and grain surface processes are discussed as possible causes of the peculiar distribution of methyl cyanide in IRC +10216.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...